Notice

This item has not yet been validated by imec staff.

Notice

This is not the latest version of this item. The latest version can be found at: https://imec-prod.atmire.com/handle/20.500.12860/38051.2

Show simple item record

dc.contributor.authorKan, Duygu
dc.contributor.authorDe Ridder, Simon
dc.contributor.authorSpina, Domenico
dc.contributor.authorGrassi, Flavia
dc.date.accessioned2021-11-02T16:03:22Z
dc.date.available2021-11-02T16:03:22Z
dc.date.issued2020
dc.identifier.issn2475-9481
dc.identifier.otherWOS:000628989600009
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/38051
dc.sourceWOS
dc.titleA Machine Learning-Based Epistemic Modeling Framework for EMC and SI Assessment
dc.typeProceedings paper
dc.contributor.imecauthorKan, Duygu
dc.contributor.imecauthorDe Ridder, Simon
dc.contributor.imecauthorSpina, Domenico
dc.contributor.orcidimecKan, Duygu::0000-0001-8789-9087
dc.contributor.orcidimecSpina, Domenico::0000-0003-2379-5259
dc.identifier.eisbn978-1-7281-4204-3
dc.source.numberofpages4
dc.source.peerreviewyes
dc.source.conference24th IEEE Workshop on Signal and Power Integrity (SPI)
dc.source.conferencedateMAY 17-20, 2020
dc.source.conferencelocationCologne
imec.availabilityUnder review


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version