Notice

This item has not yet been validated by imec staff.

Notice

This is not the latest version of this item. The latest version can be found at: https://imec-prod.atmire.com/handle/20.500.12860/40216.2

Show simple item record

dc.contributor.authorVan De Looverbosch, Tim
dc.contributor.authorHe, Jiaqi
dc.contributor.authorTempelaere, Astrid
dc.contributor.authorKelchtermans, Klaas
dc.contributor.authorVerboven, Pieter
dc.contributor.authorTuytelaars, Tinne
dc.contributor.authorSijbers, Jan
dc.contributor.authorNicolai, Bart
dc.date.accessioned2022-08-07T02:38:51Z
dc.date.available2022-08-07T02:38:51Z
dc.date.issued2022-JUN
dc.identifier.issn0168-1699
dc.identifier.otherWOS:000830894300005
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40216
dc.sourceWOS
dc.titleInline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images
dc.typeJournal article
dc.contributor.imecauthorSijbers, Jan
dc.contributor.orcidimecSijbers, Jan::0000-0003-4225-2487
dc.identifier.doi10.1016/j.compag.2022.106962
dc.source.numberofpages14
dc.source.peerreviewyes
dc.source.journalCOMPUTERS AND ELECTRONICS IN AGRICULTURE
dc.source.volume197
imec.availabilityUnder review


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version