Show simple item record

dc.contributor.authorD'hondt, Robbe
dc.contributor.authorMoylett, Sinead
dc.contributor.authorGoris, An
dc.contributor.authorVens, Celine
dc.date.accessioned2024-09-30T08:48:21Z
dc.date.available2024-09-25T17:29:16Z
dc.date.available2024-09-30T08:48:21Z
dc.date.issued2023
dc.identifier.isbn978-3-031-34343-8
dc.identifier.issn2945-9133
dc.identifier.otherWOS:001295128100003
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/44567.2
dc.sourceWOS
dc.titleA Binning Approach for Predicting Long-Term Prognosis in Multiple Sclerosis
dc.typeProceedings paper
dc.contributor.imecauthorD'hondt, Robbe
dc.contributor.imecauthorVens, Celine
dc.contributor.orcidimecD'hondt, Robbe::0000-0001-7843-2178
dc.contributor.orcidimecVens, Celine::0000-0003-0983-256X
dc.identifier.doi10.1007/978-3-031-34344-5_3
dc.identifier.eisbn978-3-031-34344-5
dc.source.numberofpages10
dc.source.peerreviewyes
dc.source.beginpage25
dc.source.endpage34
dc.source.conference21st International Conference on Artificial Intelligence in Medicine (AIME)
dc.source.conferencedateJUN 12-15, 2023
dc.source.conferencelocationPortoroz
dc.source.journalLecture Notes in Artificial Intelligence
dc.source.volume13897
imec.availabilityPublished - imec
dc.description.wosFundingTextThis work was funded by Research Fund Flanders (FWO fellowship 1S38023N) and supported by the Flemish government (through the AI Research Program) and Stichting MS Research (through a Monique Blom-de Wagt grant). We furthermore thank Professor Benedicte Dubois, neurologist at UZ Leuven, for collecting the data that was used retrospectively in this work.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version